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INTRODUCTION

Let Vand X be real vector spaces, A: V --+ X a linear transformation, and
b a fixed vector in X. We shall be interested in the operator equation

Av = b. (1)

If this equation has no solutions, we call it inconsistent (INC); otherwise,
we call it consistent (CON). If (1) is inconsistent and X is normed, then a
vector i; satisfying

II b - Ai; II :(; II b - Av II,

for all v E V will be called a best approximate solution of Av = b. If (1) is
consistent and V is normed, then a vector i; satisfying

Ai; = b,
and

II v II :(; II v II

for all v satisfying (1) will be called a minimum norm solution of Av = b.
We will call the problem of finding best approximate solutions, problem
(INC) and the problem of finding minimum norm solutions, problem (CON).

In addition to eigenvalue problems in integral equations, and classical
finite-dimensional least squares problems, inconsistent operator equations
arise directly from physical problems such as the integral equation
formulation of the interior Neumann problem for the Laplacian on a simply
connected region with smooth boundary (see, e.g., [1, 2]). Similarly, problem
(CON) arises directly from physical problems; for example, many minimum
energy or minimum effort optimal control problems reduce to finding
minimum norm solutions of consistent operator equations (see, e.g., [3, 4]).
We will show that under appropriate conditions, a (CON) problem can be
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transformed into an (INC) problem and conversely. This result is of interest
because it makes it possible to solve (CON) problems using algorithms for
(INC) problems (and conversely).

In [5], we formulated a dual maximization problem whose solution can be
used to solve problem (INC) for certain operators. We also gave an algorithm
for solving the dual problem under the assumption that A has a finite­
codimensional range. In this paper, we formulate a dual maximization
problem whose solution can be used to solve problem (CON) for certain
operators. We also generalize the algorithm given in [5] so it applies to a
wide class of maximization problems, including the dual maximization
problem (CON).

1. PRELIMINARIES

We will use the following notation: x* will denote the dual space of a
normed linear space X and Sx = {x E X: II x II = I}. IffE X* and x E X, then
(x,f> will denotef(x). If Wis a subset of X, then W-L = {IE X*: (x,f> = 0
for all x E W}. We will call a subspace W of X proximinal if each vector in X
has a closest vector in W. We will also need the following well-known
consequence of the Hahn-Banach theorem (see, e.g., [6, 7]).

THEOREM 1.1. If W is a subspace ofa real normed linear space X, and x is
a vector in X, then the following "duality" relation holds:

inf{11 x - W II: WE W} = max{<x,f):fE W\ Ilfll = I}. (2)

We will denote the kernel and range of a linear transformation A, respec­
tively, by ker(A) and R(A).

DEFINITION. If f E X* - {O}, then we call x E Sx a dual vector for f if

<x, f> = Ilfll.
The following standard results can be found, e.g., in [8].

THEOREM 1.2. If X is reflexive andfE X* - {O}, then there is at least one
dual vector for f. If, in addition, X is rotund, then the dual vector is unique.

2. RELATIONSHIPS BETWEEN PROBLEMS (CON) AND (INC)

Assume A: Y - X has finite-dimensional kernel with basis {VI' v2 , ... , vn}

and define AI: y* - ker(A) by

n

AI(f) = L <Vi ,1> Vi'
i=l
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THEOREM 2.1. If b c# 0 and vis any fixed solution of Av = b, then v is a
minimum norm solution of Av = b if and only if v = v - A1v*, where v* is
a best approximate solution of A1v* = V.

Remark. To paraphrase this result, the minimum norm solutions of
Av = b are precisely the error vectors for the best approximate solutions of
A1v* = V.

Proof of 2.1. For v* EO V*, the operator equation

A1v* = V

IS inconsistent; otherwise, Av = AA1v* = 0 contradicts the assumption
o c# b.

If
n

V = I kivi
i=l

is any vector in ker(A), then v = A1( g), where g EO V* is chosen so that
<Vi' g) = k i . Thus, R(A1) = ker(A). It follows that the solutions of Av = b
are precisely the vectors of the form

where v* EO V*. Thus, v is a minimum norm solution of Av = b if and only if

where v* is a best approximate solution of A1v* = V.
Theorem 2.1 shows that under appropriate conditions, a (CON) problem

can be transformed into an (INC) problem. We now show that under
appropriate conditions, an (INC) problem can be transformed into a (CON)
problem.

Assume A: V -- X has a closed finite-codimensional range; let
{x1*, x 2*,oo., x m *} be a basis for R(A)-L and define Ao: X -- x* by

m

Ao(x) = L <x, x i*) Xi*'
i~l

Further, let bo = Aob.

THEOREM 2.2. A vector v is a best approximate solution of Av = b if and
only if b - Av is a minimum norm solution of Aox = bo .

Proof Since R(A) = ker(Ao) and since b is a solution of Aox = bo , it
follows that the solutions of AoX = bo are the vectors of the form

x = b - Av, VE V.
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Thus, v is a best approximate solution of Av = b if and only if x = b - Av
is a minimum norm solution of Aox = bo .

Remark. It follows from this theorem that a best approximate solution
of Av = b can be obtained by solving Aox = bo for a minimum norm solution
x and then solving Av = b - x exactly.

3. A DUALITY THEOREM FOR PROBLEM (CON)

In this section, we prove a theorem relating the solution of problem (CON)
to the solution of a dual maximization problem. This result is analogous
to the duality theorem [5, Theorem 1.2] for problem (INC).

THEOREM 3.1. Let V be a rotund and reflexive Banach space, X a vector
space, and A: V~ X a linear transformation whose kernel is a proximinal
subspace of V. Let vbe any solution of Av = b. IfJis any solution of the dual
problem

<v,f> = max{<v,f):fE ker(A)l-, Ilfll = I},

and ifJ* is the dual vector for J, then <v,J)J* is a minimum norm solution
of Av = b.

Proof Let

Then,
v = <v,J)J*.

II v II = l<v,J)III/* II = <v,f>.

(3)

(4)

If we denote the value in (4) by p, it follows from (2) and (4) that

p = II v II = inf{11 v - ell: e E ker(A)}.

If v is any solution of Av = b, then v - v E ker(A) so that from (5)

II v II = II v - (v - v)li ~ p = II v Ii.

(5)

(6)

Thus, ifvis a solution of Av = b, it must be a minimum norm solution, by (6).
To complete the proof, we shall show

v - vE ker(A),

from which it follows that v is a solution of Av = b.
Let g E ker(A)-L. Then,

<v - <v,j) /*, g) = (v, g) ~ p(/*, g). (7)
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Since ker(A) is proximinal, there exists eE ker(A) such that

II v - ell = p.
Thus, from (7),

<v - <v,/)1*, g) = (v - e, g) - p(/*, g).

Letting w = (1/p)(v - e), this can be rewritten as

(v - (v,/) 1*, g) = p(w, g) - p<I*, g).

Taking g = I in (8), it follows that

o = p(w,/) - p(/*'/),

and consequently,
<w,/) = 11/11.

Since II w II = I, it follows from the uniqueness of the dual vector that

w =1*.

It now follows from (8) that

(v - (v,/) 1*, g) = 0

for all g E ker(A)-L. Since ker(A) is proximinal, it is closed, so that

v - (v,/) 1* E ker(A);
that is

v - iJ E ker(A).

4. AN ALGORITHM FOR OBTAINING MAXIMIZING FUNCTIONALS
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(8)

In this section, we give a modification of the algorithm stated in
[5, Theorem 2.1]. Under appropriate conditions, this modified algorithm
can be used to find the maximizing functional fin (2).

THEOREM 4.1. If X and X* are uniformly rotund and W has finite codi­
mension, then the following algorithm yields the maximizing functional f of (2)
in a finite number ofsteps or else yields a sequence (/;) that converges strongly
to the maximizing functional.

Step 1. Select a fixed basis B = {WI' w2 , .•. , wn } for {Wu x}-L and let
F: X -+ {W U x}-L be defined by

n

F(z) = I (z, Wi) Wi .
i~I
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Step 2. Choosefo E W-L such that lifo II 1 and <x,fo> > 0.

Step 3. Set i = 0.

Step 4. Compute hi = F(j;*).

Step 5. If hi = 0, then stop since fi IS the maximizing functional.
If hi =Ie 0, then go to Step (6).

Step 6. Determine lXi such that

Ilf; - lXihi II ~ Ilh - Ahi II, for all A.

Step 7. Set h+1 = (h - lXihi)/llh - lXihi II, increase i by 1 and return
to Step 4.

The proof is an obvious modification of the proof in [5]; we omit the
details.

Remark. The algorithm in Theorem 4.1 together with Theorem 3.1 can be
used to solve problem (CON) directly. However, the algorithm in Theorem 4.1
requires that ker(A)-L have finite dimension. Thus, if A is a Fredholm operator
(e.g., A = /J - U, where U is compact) then ker(A) also has finite dimension,
(see [8]) which implies that the domain of A is finite dimensional.
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